

Sensors and state estimation

ST5 Autonomous robotics

Francis Colas

2022-09-12

Introduction

Perception

- interpretation of sensor values
- inference on the environment
- inference on the state of the robot
- building of an internal representation

Aim of this session

- presentation of various kinds of sensors
- introduction to state estimation

01

Sensors

Definitions

Sensor

- physical device
- measuring some physical phenomenon
- in a particular region of space

Characteristics

- view angle, range, frequency
- accuracy (bias), precision (variability)
- drift, saturation
- weight, active/passive, power draw...

Two kinds

- proprioceptive: information on the robot itself
- exteroceptive: information on the environment

Distance sensors

Sonar

- ▶ time of flight of ultrasound pulse (40-68 kHz)
- range of a few meters, angle of a few dozens of degrees
- ▶ 10–25 Hz (\sim 18 ms for 3 m round trip)
- not great on cloth

Infrared

- intensity or angle of an infrared pulse (800–900 nm)
- range around a meter, angle of a few degrees
- ≥ ~20 Hz
- not great on mate black

Devantech SRF02

Sharp GP2Y0A21YK0F

Distance sensors

Unidirectional laser

- time of flight of a laser pulse
- dozens of meters, very focused
- ~20 Hz
- not great on reflective surfaces

090

Lightwave SF02

Laser scanner

- time of flight, rotative sensor (mirror)
- ► 180-270-360° scanning angle with 360-1080 points, 4-80 m
- ▶ 20-50 Hz
- expensive, heavy

Hokuyo UTM30-LX

Distance sensors

Rotating laser

- time of flight of a laser pulse
- \sim 100 m, 360° horizontal, \sim 30° vertical with several channels (16, 32, 64)
- ightharpoonup \sim 1 Mpts/s, \sim 10 rev/s
- big, expensive, heavy

Time of flight cameras

- time of flight of IR pulse with matrix of sensors
- several meters
- ▶ 30-60 Hz
- not great outside

Velodyne HDL-64E

Mesa Imaging SR4000

Cameras

Color camera

- quantity of light on color receptors
- ▶ angle of view \sim 10–100°, unconstrained range
- small, light, low power, cheap
- difficult to calibrate

Random camera (VC0706 UART VGA)

Omnidirectional camera

- several cameras
- lens
- mirror
- difficult to calibrate

Immersive Media Dodeca 2360

Kodak Pixpro SP360

0-360 Panoramic Optic

Depth cameras

Stereo camera

- disparity between two images
- decreasing precision with distance
- not great with uniform textures

0 . 0

PointGrey Bumblebee2

RGB-D camera

- color camera + depth
- stereo with structured light projector or time of flight
- calibration between RGB and D

Asus Xtion Pro

Inertial Measurement Unit (IMU)

Accelerometer

- measure proper acceleration along a given axis
- hundreds of Hz
- ▶ drift
- small, cheap, low power (MEMS)

Gyroscope

- angular velocity
- hundreds of Hz
- drift
- can be small, cheap and low power (MEMS)

Sparkfun ADXL335

Sparkfun ITG-3200

Other sensors

Other sensors

- wheel encoders (can be embedded with the motors)
- force
- switch
- temperature
- humidity
- pressure...

02

State estimation

State estimation

State estimation

- compute an estimate of the state of the robot
- from sensors values
- one of the perception problems
- needs sensor models
- needs a robot model

Approaches

- signal processing
- Bayesian filtering
- Kalman filtering

Bayesian filter

Model

$$p(\boldsymbol{x}_{0:T}, \boldsymbol{z}_{1:T}, \boldsymbol{u}_{1:T}) = p(\boldsymbol{x}_0) \prod_{k=1}^{T} p(\boldsymbol{u}_k) p(\boldsymbol{x}_k \mid \boldsymbol{x}_{k-1}, \boldsymbol{u}_k) p(\boldsymbol{z}_k \mid \boldsymbol{x}_k)$$

Inference

$$p(\mathbf{x}_{k} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k})$$

$$p(\mathbf{x}_{k+1} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k+1}) = \sum_{\mathbf{x}_{k}} p(\mathbf{x}_{k+1} \mid \mathbf{x}_{k}, \mathbf{u}_{k+1}) p(\mathbf{x}_{k} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k})$$

$$p(\mathbf{x}_{k+1} \mid \mathbf{z}_{1:k+1}, \mathbf{u}_{1:k+1}) \propto p(\mathbf{z}_{k+1} \mid \mathbf{x}_{k+1}) p(\mathbf{x}_{k+1} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k+1})$$

Kalman filter

Overview on Kalman filtering

- Gaussian probability distributions
- linear transition and observation models

Variables

- ightharpoonup state vector: $oldsymbol{x}_k$
- observation vector:z_k

command vector:
u_k

Models

Transition

Observation

$$\mathbf{x}_k = \mathbf{F}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k$$

$$\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$$

$$p(\mathbf{x}_k \mid \mathbf{x}_{k-1}, \mathbf{u}_k) = \mathcal{N}(\mathbf{F}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k, \mathbf{Q}_k) \quad p(\mathbf{z}_k \mid \mathbf{x}_k) = \mathcal{N}(\mathbf{H}_k \mathbf{x}_k, \mathbf{R}_k)$$

Inference in a Kalman filter

Principle

- closed form for exact inference
- lacktriangle distributions represented by mean and covariance: $\hat{m{x}}_{k|k},m{P}_{k|k}$

Prediction

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k$$

$$\mathbf{P}_{k|k-1} = \mathbf{F}_k \mathbf{P}_{k-1|k-1} \mathbf{F}_k^\mathsf{T} + \mathbf{Q}_k$$

Update / Correction

$$\begin{split} \tilde{\boldsymbol{y}}_k &= \boldsymbol{z}_k - \boldsymbol{H}_k \hat{\boldsymbol{x}}_{k|k-1} \\ \boldsymbol{S}_k &= \boldsymbol{H}_k \boldsymbol{P}_{k|k-1} \boldsymbol{H}_k^\mathsf{T} + \boldsymbol{R}_k \\ \boldsymbol{K}_k &= \boldsymbol{P}_{k|k-1} \boldsymbol{H}_k^\mathsf{T} \boldsymbol{S}_k^{-1} \\ \hat{\boldsymbol{x}}_{k|k} &= \hat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{K}_k \tilde{\boldsymbol{y}}_k \\ \boldsymbol{P}_{k|k} &= (I - \boldsymbol{K}_k \boldsymbol{H}_k) \boldsymbol{P}_{k|k-1} \end{split}$$

State estimation

Example

- altitude estimation of a blimp
- with a sonar
- no command

Variables

- **x**: altitude
- **z**: distance to ground measured by the sonar

Parameters

$$\forall k, \mathbf{F}_k = \mathbf{F} = 1$$

$$ightharpoonup orall k, m{Q}_k = m{Q} = 0.01^2 \, \mathrm{m}^2$$

$$\triangleright \forall k, \mathbf{H}_k = \mathbf{H} = 1$$

$$\forall k, \mathbf{R}_k = \mathbf{R} = 0.05^2 \,\mathrm{m}^2$$

Example (1/2)

Initialization

$$\hat{\boldsymbol{x}}_{0|0} = 1.0$$

$$P_{0|0} = 0.2^2 \, \mathrm{m}^2$$

Prediction

$$\hat{\mathbf{x}}_{1|0} = 1$$
 $\mathbf{P}_{1|0} = 0.0401$

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k$$
$$\mathbf{P}_{k|k-1} = \mathbf{F}_k \mathbf{P}_{k-1|k-1} \mathbf{F}_k^T + \mathbf{Q}_k$$

Correction with $\mathbf{z}_1 = 0.8$

$$\tilde{\mathbf{y}}_1 = -0.2$$
 $\mathbf{S}_1 = 0.0426$
 $\mathbf{K}_1 = 0.9413$
 $\hat{\mathbf{x}}_{1|1} = 0.8117$
 $\mathbf{P}_{1|1} = 0.0024$

$$\begin{split} \tilde{\boldsymbol{y}}_k &= \boldsymbol{z}_k - \boldsymbol{H}_k \hat{\boldsymbol{x}}_{k|k-1} \\ \boldsymbol{S}_k &= \boldsymbol{H}_k \boldsymbol{P}_{k|k-1} \boldsymbol{H}_k^T + \boldsymbol{R}_k \\ \boldsymbol{K}_k &= \boldsymbol{P}_{k|k-1} \boldsymbol{H}_k^T \boldsymbol{S}_k^{-1} \\ \hat{\boldsymbol{x}}_{k|k} &= \hat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{K}_k \tilde{\boldsymbol{y}}_k \\ \boldsymbol{P}_{k|k} &= (I - \boldsymbol{K}_k \boldsymbol{H}_k) \boldsymbol{P}_{k|k-1} \end{split}$$

Informatics mathematic

Example (2/2)

Last state

$$\hat{\mathbf{x}}_{1|1} = 0.8117$$

$$P_{1|1} = 0.0024$$

Prediction

$$\hat{\mathbf{x}}_{2|1} = 0.8117$$
 $\mathbf{P}_{2|1} = 0.0025$

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k$$

$$\mathbf{P}_{k|k-1} = \mathbf{F}_k \mathbf{P}_{k-1|k-1} \mathbf{F}_k^T + \mathbf{Q}_k$$

Correction with $\mathbf{z}_2 = 0.85$

$$\tilde{\mathbf{y}}_2 = 0.0383$$
 $\mathbf{S}_2 = 0.0050$
 $\mathbf{K}_2 = 0.4953$
 $\hat{\mathbf{x}}_{2|2} = 0.8307$
 $\mathbf{P}_{2|2} = 0.0012$

$$egin{aligned} ilde{oldsymbol{y}}_k &= oldsymbol{z}_k - oldsymbol{H}_k \hat{oldsymbol{x}}_{k|k-1} \ oldsymbol{S}_k &= oldsymbol{H}_k oldsymbol{P}_{k|k-1} oldsymbol{H}_k^T oldsymbol{S}_k^{-1} \ \hat{oldsymbol{x}}_{k|k} &= \hat{oldsymbol{x}}_{k|k-1} + oldsymbol{K}_k ilde{oldsymbol{y}}_k \ oldsymbol{P}_{k|k} &= (I - oldsymbol{K}_k oldsymbol{H}_k) oldsymbol{P}_{k|k-1} \end{aligned}$$

03

Conclusion

Conclusion

Sensors

- various sensors with different characteristics
- physical measurement process is important

State estimation

- inference on the state of the robot
- iterative algorithms (constant complexity)
- sensor model is important

Kalman filter

- estimation of mean and covariance
- linear Gaussian models (extensions: EKF, UKF, particle filter...)

Bibliography

Books

- ► Thrun et al., Probabilistic Robotics, MIT Press, 2005.
- Siegwart et al., Introduction to Autonomous Mobile Robots, MIT Press, 2011.
- Siciliano et al., Springer Handbook of Robotics, 2nd ed., Springer, 2016.

Wikipedia

https://en.wikipedia.org/wiki/Kalman_filter

Informatics mathematics

Thanks for your attention Questions?