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Perception
▶ interpretation of sensor values
▶ inference on the environment
▶ inference on the state of the robot
▶ building of an internal representation

Aim of this session
▶ presentation of various kinds of sensors
▶ introduction to state estimation
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01
Sensors



Sensor
▶ physical device
▶ measuring some physical phenomenon
▶ in a particular region of space

Characteristics
▶ view angle, range, frequency
▶ accuracy (bias), precision (variability)
▶ drift, saturation
▶ weight, active/passive, power draw…

Two kinds
▶ proprioceptive: information on the robot itself
▶ exteroceptive: information on the environment

Definitions

Sensors
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Sonar
▶ time of flight of ultrasound pulse (40–68 kHz)
▶ range of a fewmeters, angle of a few dozens of

degrees
▶ 10–25Hz (∼18ms for 3m round trip)
▶ not great on cloth

Devantech SRF02

Infrared
▶ intensity or angle of an infrared pulse

(800–900nm)
▶ range around a meter, angle of a few degrees
▶ ∼20Hz
▶ not great on mate black Sharp GP2Y0A21YK0F

Distance sensors

Sensors
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Unidirectional laser
▶ time of flight of a laser pulse
▶ dozens of meters, very focused
▶ ∼20Hz
▶ not great on reflective surfaces Lightwave SF02

Laser scanner
▶ time of flight, rotative sensor (mirror)
▶ 180–270–360° scanning angle with 360–1080

points, 4–80m
▶ 20–50Hz
▶ expensive, heavy Hokuyo UTM30-LX

Distance sensors

Sensors
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Rotating laser
▶ time of flight of a laser pulse
▶ ∼100m, 360° horizontal,∼30° vertical with

several channels (16, 32, 64)
▶ ∼1Mpts/s,∼10 rev/s
▶ big, expensive, heavy

Velodyne HDL-64E

Time of flight cameras
▶ time of flight of IR pulse with matrix of

sensors
▶ several meters
▶ 30–60Hz
▶ not great outside

Mesa Imaging SR4000

Distance sensors

Sensors
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Color camera
▶ quantity of light on color receptors
▶ angle of view∼10–100°, unconstrained range
▶ small, light, low power, cheap
▶ difficult to calibrate Random camera

(VC0706 UART VGA)

Omnidirectional camera
▶ several cameras
▶ lens
▶ mirror
▶ difficult to calibrate Immersive

Media
Dodeca 2360

Kodak Pixpro
SP360 0-360

Panoramic
Optic

Cameras

Sensors
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Stereo camera
▶ disparity between two images
▶ decreasing precision with distance
▶ not great with uniform textures PointGrey Bumblebee2

RGB-D camera
▶ color camera + depth
▶ stereo with structured light projector or time

of flight
▶ calibration between RGB and D

Asus Xtion Pro

Depth cameras

Sensors
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Accelerometer
▶ measure proper acceleration along a given

axis
▶ hundreds of Hz
▶ drift
▶ small, cheap, low power (MEMS)

Sparkfun ADXL335

Gyroscope
▶ angular velocity
▶ hundreds of Hz
▶ drift
▶ can be small, cheap and low power (MEMS) Sparkfun ITG-3200

Inertial Measurement Unit (IMU)

Sensors
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Other sensors
▶ wheel encoders (can be embedded with the motors)
▶ force
▶ switch
▶ temperature
▶ humidity
▶ pressure…

Other sensors

Sensors
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02
State estimation



State estimation
▶ compute an estimate of the state of the robot
▶ from sensors values
▶ one of the perception problems
▶ needs sensor models
▶ needs a robot model

Approaches
▶ signal processing
▶ Bayesian filtering
▶ Kalman filtering

State estimation

State estimation
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Model

p(xxx0:T, zzz1:T, uuu1:T) = p(xxx0)
T∏
k=1

p(uuuk)p(xxxk | xxxk−1, uuuk)p(zzzk | xxxk)

Inference

p(xxxk | zzz1:k, uuu1:k)

p(xxxk+1 | zzz1:k, uuu1:k+1) =
∑
xxxk

p(xxxk+1 | xxxk, uuuk+1)p(xxxk | zzz1:k, uuu1:k)

p(xxxk+1 | zzz1:k+1, uuu1:k+1) ∝ p(zzzk+1 | xxxk+1)p(xxxk+1 | zzz1:k, uuu1:k+1)

Bayesian filter

State estimation
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Overview on Kalman filtering
▶ Gaussian probability distributions
▶ linear transition and observation models

Variables

▶ state vector: xxxk
▶ observation vector:

zzzk

▶ command vector:
uuuk

Models
Transition

xxxk = FFFkxxxk−1 + BBBkuuuk + wwwk

p(xxxk | xxxk−1, uuuk) = N (FFFkxxxk−1+BBBkuuuk,QQQk)

Observation

zzzk = HHHkxxxk + vvvk

p(zzzk | xxxk) = N (HHHkxxxk,RRRk)

Kalman filter

State estimation
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Principle
▶ closed form for exact inference
▶ distributions represented by mean and covariance: x̂xxk|k, PPPk|k

Prediction
x̂xxk|k−1 = FFFkx̂xxk−1|k−1 + BBBkuuuk

PPPk|k−1 = FFFkPPPk−1|k−1FFF
⊺
k + QQQk

Update / Correction
ỹyyk = zzzk − HHHkx̂xxk|k−1

SSSk = HHHkPPPk|k−1HHH
⊺
k + RRRk

KKKk = PPPk|k−1HHH
⊺
k SSS

−1
k

x̂xxk|k = x̂xxk|k−1 + KKKkỹyyk
PPPk|k = (I− KKKkHHHk)PPPk|k−1

Inference in a Kalman filter

State estimation
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Example
▶ altitude estimation of a blimp
▶ with a sonar
▶ no command

Variables
▶ xxx: altitude
▶ zzz: distance to ground measured by the sonar

Parameters
▶ ∀k, FFFk = FFF = 1

▶ ∀k,QQQk = QQQ = 0.012m2

▶ ∀k,HHHk = HHH = 1

▶ ∀k,RRRk = RRR = 0.052m2

State estimation

State estimation
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Initialization

x̂xx0|0 = 1

PPP0|0 = 0.22m2

Example

State estimation
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x̂xxk|k−1 = FFFkx̂xxk−1|k−1 + BBBkuuuk
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T
k + QQQk

Correction with zzz1 = 0.8

ỹyy1 = −0.2
SSS1 = 0.0426

KKK1 = 0.9413

x̂xx1|1 = 0.8117

PPP1|1 = 0.0024

ỹyyk = zzzk − HHHkx̂xxk|k−1

SSSk = HHHkPPPk|k−1HHH
T
k + RRRk

KKKk = PPPk|k−1HHH
T
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−1
k

x̂xxk|k = x̂xxk|k−1 + KKKkỹyyk
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Correction with zzz1 = 0.8
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Prediction
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03
Conclusion



Sensors
▶ various sensors with different characteristics
▶ physical measurement process is important

State estimation
▶ inference on the state of the robot
▶ iterative algorithms (constant complexity)
▶ sensor model is important

Kalman filter
▶ estimation of mean and covariance
▶ linear Gaussian models (extensions: EKF, UKF, particle filter…)

Conclusion

Conclusion
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Thanks for your attention
Questions?
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