Primer on Bayesian inference ST5 Autonomous robotics
 Francis Colas
 2022-09-12

Introduction

Autonomous robots
 - anatomy
 - functions

Introduction

Autonomous robots

- anatomy
- functions

Models

- formalization of expected behavior of
- sensors, actuators
- environment (including others in interaction)
- not fully accurate

Introduction

Autonomous robots

- anatomy
- functions

Models

- formalization of expected behavior of
- sensors, actuators
- environment (including others in interaction)
- not fully accurate

Aim of this session

- reasoning
- reminders on probabilities
- Bayesian inference

Bayesian modeling

01
Reasoning

Reasoning

Definition (Merriam-Webster)
 - reasoning

Reasoning

Definition (Merriam-Webster)

- reasoning: the use of reason

Reasoning

Definition (Merriam-Webster)

- reasoning: the use of reason
- reason:
- sanity
- proper exercise of the mind
- the power of comprehending, inferring, or thinking

Reasoning

Definition (Merriam-Webster)

- reasoning: the use of reason
- reason:
- sanity
- proper exercise of the mind
- the power of comprehending, inferring, or thinking

Definition (Wikipedia)

- reasoning: applying logic to seek truth and draw conclusions from new or existing information

Reasoning

Definition (Merriam-Webster)

- reasoning: the use of reason
- reason:
- sanity
- proper exercise of the mind
- the power of comprehending, inferring, or thinking

Definition (Wikipedia)

- reasoning: applying logic to seek truth and draw conclusions from new or existing information

Use in robotics

- process sensor information
- know what is going on

Reasoning

Forms of reasoning

- deduction: go from premises to conclusion
- induction: go from cases to generalization
- abduction/retroduction: find out more likely causes of a given effect
- analogical: go from cases to cases by similarity

Reasoning

Forms of reasoning

- deduction: go from premises to conclusion
- induction: go from cases to generalization
- abduction/retroduction: find out more likely causes of a given effect
- analogical: go from cases to cases by similarity
- fallacy: (self-)deception by wrong reasoning

Reasoning

Forms of reasoning

- deduction: go from premises to conclusion
- induction: go from cases to generalization
- abduction/retroduction: find out more likely causes of a given effect
- analogical: go from cases to cases by similarity
- fallacy: (self-)deception by wrong reasoning

Formalization

Reasoning

Forms of reasoning

- deduction: go from premises to conclusion
- induction: go from cases to generalization
- abduction/retroduction: find out more likely causes of a given effect
- analogical: go from cases to cases by similarity
- fallacy: (self-)deception by wrong reasoning

Formalization

- logic: Aristotle, Frege, Hilbert, Gödel, etc.

Reasoning

Forms of reasoning

- deduction: go from premises to conclusion
- induction: go from cases to generalization
- abduction/retroduction: find out more likely causes of a given effect
- analogical: go from cases to cases by similarity
- fallacy: (self-)deception by wrong reasoning

Formalization

- logic: Aristotle, Frege, Hilbert, Gödel, etc.

Issue

- imperfect models (\sim theorems)
- imperfect knowledge (\sim axioms)
\Rightarrow truth-value replaced by plausibility/belief

Cox theorem

Cox theorem (1946)

- plausibility of a proposition as a real number
- common sense reasoning and consistency
\Rightarrow plausibility can be mapped to probability
\Rightarrow reasoning is probability calculus

Cox theorem

Cox theorem (1946)

- plausibility of a proposition as a real number
- common sense reasoning and consistency
\Rightarrow plausibility can be mapped to probability
\Rightarrow reasoning is probability calculus

Bayesian probability theory (E.T. Jaynes)

- formal system of logic under uncertainty
- computing beliefs (state of knowledge)
- using probability computation

Cox theorem

Cox theorem (1946)

- plausibility of a proposition as a real number
- common sense reasoning and consistency
\Rightarrow plausibility can be mapped to probability
\Rightarrow reasoning is probability calculus

Bayesian probability theory (E.T. Jaynes)

- formal system of logic under uncertainty
- computing beliefs (state of knowledge)
- using probability computation

Different from the frequentist interpretation of probabilities

Reminders on probabilities

Probability values

Probabilities for propositions

- number between 0 and 1

(Random) Variable

- variable we don't know the value of
- values in a given finite domain \mathcal{D} : finite set of integers, categories...

Probability distribution

- distribution over the different possible values in \mathcal{D}

$$
\left\{\begin{array}{l}
\mathcal{D}_{C} \rightarrow(0,1) \\
\quad c \mapsto P([C=c])= \begin{cases}0.7 & \text { if } c=8 \\
0.3 & \text { if } c=10\end{cases}
\end{array}\right.
$$

Probability for continuous variables

Continuous variables

- continuous domain: $(0,1), \mathbb{R}^{+}, \mathbb{R}^{\prime}, \mathbb{R}^{n}$...

Cumulative probability

- probability for intervals: number between 0 and 1

$$
P([D<5 \mathrm{~min}])=0.9
$$

- cumulative density function (cdf)

$$
\left\{\begin{aligned}
\mathcal{D}_{D} & \rightarrow(0,1) \\
d & \mapsto P([D<d])
\end{aligned}\right.
$$

Probability density function

Probability density function

- derivative of cumulative probability
- can be higher than 1
- e.g. Cauchy distribution:

$$
\begin{aligned}
& \text { cdf: }\left\{\begin{array}{l}
\mathbb{R} \rightarrow(0,1) \\
x \mapsto P([X<x])=\frac{1}{\pi} \arctan \left(\frac{x-x_{0}}{\gamma}\right)+\frac{1}{2}
\end{array}\right. \\
& \text { pdf: }\left\{\begin{array}{l}
\mathbb{R} \rightarrow \mathbb{R}^{+} \\
x \mapsto p([X=x])=\frac{1}{\pi \gamma\left[1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right]}
\end{array}\right.
\end{aligned}
$$

Combinations of variables

Conjunction

- probability of both variables: $P([A=$ red $],[C=8])=0.36$
- still a variable: $\mathcal{D}_{A, B}=\mathcal{D}_{A} \times \mathcal{D}_{B}$
- commutative: $A, B=B, A$

Conditional probability

- assumption on the value of a variable: $P([C=8] \mid[A=$ red $])=0.9$
- collection of probability distributions

$$
\begin{aligned}
P(C \mid A): & \left\{\begin{aligned}
& \mathcal{D}_{A} \times \mathcal{D}_{C} \rightarrow(0,1) \\
& a, c \mapsto P([C=c] \mid[A=a])
\end{aligned}\right. \\
& \equiv\left\{\begin{aligned}
& \mathcal{D}_{A} \rightarrow\left[\mathcal{D}_{C} \rightarrow(0,1)\right. \\
& a \mapsto[\quad c \mapsto P([C=c] \mid[A=a])
\end{aligned}\right]
\end{aligned}
$$

Probabilities

Notations

- $\operatorname{Pr}(A)$
- $P(A)$
- $p(A)$
- $P([A=a])$
- $p(a)$
- $\quad \pi(a)$
- need to be careful:
- discrete probability/density/cumulative probability
- variable/value

Continuous/discrete

- unified with measure theory
- still need caution:
- densities are not probabilities
- densities can be bigger than 1
- densities also follow probability operations

03
Bayesian inference

Normalization

Probability distributions

- sum to 1 (law of total probability)

$$
\sum_{a \in \mathcal{D}_{A}} P([A=a])=1 \quad \int_{\mathcal{D}_{A}} p(a) d a=1 \quad \sum_{A} p(A)=1
$$

Normalization

Probability distributions

- sum to 1 (law of total probability)

$$
\sum_{a \in \mathcal{D}_{A}} P([A=a])=1 \quad \int_{\mathcal{D}_{A}} p(a) d a=1 \quad \sum_{A} p(A)=1
$$

Conditional probability distributions

- don't sum to 1

$$
\sum_{B} P(A \mid B) \neq 1 \quad \sum_{A, B} P(A \mid B) \neq 1 \quad \text { in general }
$$

Normalization

Probability distributions

- sum to 1 (law of total probability)

$$
\sum_{a \in \mathcal{D}_{A}} P([A=a])=1 \quad \int_{\mathcal{D}_{A}} p(a) d a=1 \quad \sum_{A} p(A)=1
$$

Conditional probability distributions

- don't sum to 1

$$
\sum_{B} P(A \mid B) \neq 1 \quad \sum_{A, B} P(A \mid B) \neq 1 \quad \text { in general }
$$

- but of course

$$
\forall b \in \mathcal{D}_{B}, \sum_{a \in \mathcal{D}_{A}} P([A=a] \mid[B=b])=1 \quad \sum_{A} p(A \mid B)=1
$$

Marginalization rule

Marginalization rule

- "sum rule"
- simple consequence of normalization of distributions

$$
\sum_{A} p(A, B)=p(B)
$$

Marginalization rule

Marginalization rule

- "sum rule"
- simple consequence of normalization of distributions

$$
\sum_{A} p(A, B)=p(B)
$$

Validity

- continuous or discrete variable
- probabilities or distributions
- conditional distributions
- variable conjunctions

$$
\sum_{A, B} p(A, B, C \mid D)=p(C \mid D)
$$

Bayes rule

Bayes rule

- "product rule"
- several ways to state it
- $p(B \mid A)=\frac{p(A \mid B) p(B)}{p(A)}$
- $p(A, B)=p(A \mid B) p(B)=p(B \mid A) p(A)$
- $p(A \mid B)=\frac{p(A, B)}{p(B)}$

Bayes rule

Bayes rule

- "product rule"
- several ways to state it
- $p(B \mid A)=\frac{p(A \mid B) p(B)}{p(A)}$
- $p(A, B)=p(A \mid B) p(B)=p(B \mid A) p(A)$
- $p(A \mid B)=\frac{p(A, B)}{p(B)}$

Validity

- continuous or discrete variables
- probabilities or distributions
- conditional distributions
- variable conjunctions

$$
p(A, B, C \mid D)=p(A \mid B, C, D) p(B, C \mid D)
$$

Bayesian inference

Bayesian inference

- computation of some (conditional) probability distribution
- based on a factorization of the joint probability distribution
\rightarrow generic

$$
p(A \mid C)=\frac{\sum_{B} p(A, B, C)}{\sum_{A, B} p(A, B, C)}
$$

Implementation challenges

- computation of sums or integrals
- ordering of sums and product

Example: disease test

Variables

- infected or not: i or $\neg i$
- positive test or not: t or $\neg t$

Parameters

- sensibility $(p(t \mid i)): 96 \%$
- specificity $(p(\neg t \mid \neg i)$): 99.2 \%
- circulation: $p(i)=0.001$

Inference example（1／2）

Probability of positive test：

$$
\begin{aligned}
p(t) & =\sum_{i} p(t, i) \\
& =\sum_{i} p(t \mid i) p(i) \\
& =p(t \mid \neg i) p(\neg i)+p(t \mid i) p(i) \\
& =(1-p(\neg t \mid \neg i)) p(\neg i)+p(t \mid i) p(i) \\
& =0.008 * 0.999+0.96 * 0.001 \\
p(t) & =0.008952
\end{aligned}
$$

marginalization

Bayes rule
standard arithmetic marginalization model

Inference example (2/2)

Probability of being infected with positive test result:

$$
\begin{array}{rlr}
p(i \mid t) & =\frac{p(t, i)}{p(t)} & \text { Bayes rule } \\
& =\frac{p(t \mid i) p(i)}{p(t)} & \\
& =\frac{0.96 * 0.001}{0.008952} & \text { Bayes rule } \\
& \approx 0.107 &
\end{array}
$$

Probability of not being infected with negative test result:

$$
p(\neg i \mid \neg t) \approx 0.99996
$$

04

Bayesian modeling

Modeling

Modeling

- expressing knowledge
- deduce properties

Different paradigms

- equations: classical, differential...
- logic: propositional, first-order...
- probabilities, fuzzy logic...

Bayesian modeling

- uncertain and incomplete knowledge
- plausibility as probability (Cox theorem)
- "subjectivist" use of probabilities

Bayesian modeling

Bayesian modeling

- specify model
- state assumptions

Model

- define variables
- specify joint distribution

Joint distribution

- "exponential" with number of variables
- factorization using independence assumptions

Independence assumptions

Independence

- A independent from B (noted $A \perp B$)
- iff $p(A, B)=p(A) p(B)$

Example

- $\mathcal{D}_{A}=1, \ldots, N$ and $\mathcal{D}_{B}=1, \ldots, M$
- $p(A, B): N \times M-1=99$ degrees of freedom
- if $A \perp B, p(A, B)=p(A) p(B):(N-1)+(M-1)=18$ dof

Conditional independence

- A independent from B conditionally to $C(A \perp B \mid C)$
- iff $p(A, B \mid C)=p(A \mid C) p(B \mid C)$

Independence assumptions

Independence

- A independent from B (noted $A \perp B$)
- iff $p(A, B)=p(A) p(B)$

Example

- $\mathcal{D}_{A}=1, \ldots, N$ and $\mathcal{D}_{B}=1, \ldots, M$
- $p(A, B): N \times M-1=99$ degrees of freedom
- if $A \perp B, p(A, B)=p(A) p(B):(N-1)+(M-1)=18$ dof

Conditional independence

- A independent from B conditionally to $C(A \perp B \mid C)$
- iff $p(A, B \mid C)=p(A \mid C) p(B \mid C)$
- Warning: $A \perp B \mid C \nRightarrow A \perp B$

Independence assumptions

Independence

- A independent from B (noted $A \perp B$)
- iff $p(A, B)=p(A) p(B)$

Example

- $\mathcal{D}_{A}=1, \ldots, N$ and $\mathcal{D}_{B}=1, \ldots, M$
- $p(A, B): N \times M-1=99$ degrees of freedom
- if $A \perp B, p(A, B)=p(A) p(B):(N-1)+(M-1)=18$ dof

Conditional independence

- A independent from B conditionally to $C(A \perp B \mid C)$
- iff $p(A, B \mid C)=p(A \mid C) p(B \mid C)$
- Warning: $A \perp B \mid C \nRightarrow A \perp B$

Factorization of the joint

Factorization of the joint

- $p(A, B, C)$
- Bayes rule (always true)

$$
p(A, B, C)=p(A) p(B \mid A) p(C \mid A, B)
$$

Factorization of the joint

Factorization of the joint

- $p(A, B, C)$
- Bayes rule (always true)

$$
p(A, B, C)=p(A) p(B \mid A) p(C \mid A, B)
$$

- assuming $A \perp B$:

$$
p(A, B, C)=p(A) p(B) p(C \mid A, B)
$$

Factorization of the joint

Factorization of the joint

- $p(A, B, C)$
- Bayes rule (always true)

$$
p(A, B, C)=p(A) p(B \mid A) p(C \mid A, B)
$$

- assuming $A \perp B$:

$$
p(A, B, C)=p(A) p(B) p(C \mid A, B)
$$

- assuming only $C \perp B \mid A$:

$$
p(A, B, C)=p(A) p(B \mid A) p(C \mid A)
$$

Bayesian networks

Bayesian networks

- graphical representation of dependencies
- nodes are variables
- (lack of) edges are [conditional] (in)dependence assumptions

Bayesian networks

Bayesian networks

- graphical representation of dependencies
- nodes are variables
- (lack of) edges are [conditional] (in)dependence assumptions

Example

$$
p(O, S, A)=P(S) P(O \mid S) P(A \mid S)
$$

Distributions

Discrete distribution

- probability value for each variable value
- parameters: table
- specific case: uniform

Probability distributions on continuous variables

- expression of probability density function
- depends on the domain

Continuous uniform

- only on a bounded interval (a, b)
- no parameter

$$
p(x)=\frac{1}{b-a}
$$

Examples of Continuous distributions

Gaussian

- only on \mathbb{R}
- parameters: mean μ and standard deviation σ

$$
p(x)=\mathcal{N}(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

multivariate Gaussian

- on real vectors in \mathbb{R}^{d}
parameters: mean vector $\boldsymbol{\mu} \in \mathbb{R}^{d}$ and covariance matrix ${ }^{a} \Sigma \in \mathbb{R}^{d \times d}$

$$
p(\boldsymbol{x})=\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \Sigma)=(2 \pi)^{-\frac{d}{2}} \operatorname{det} \Sigma^{\frac{1}{2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
$$

[^0]
Conditional probability distributions

Conditional probability distributions

- same choice of distributions
- conditional: collection of distributions
- parameters as functions of conditioning variable

Discrete example

$$
\begin{array}{rcccc}
& & B=0 & B=1 & B=2 \\
p(A \mid B): & A=0 & 0.4 & 0.5 & 0.1 \\
& A=1 & 0.6 & 0.5 & 0.9
\end{array}
$$

Continuous example

$$
p(x \mid y)=\mathcal{N}\left(x ; \mu_{x}(y), \sigma_{x}(y)\right)
$$

05
Conclusion

Probabilities

Probabilities

- represent state of knowledge
- ambiguous notations

Bayesian inference

- Bayes and marginalization rules
- mechanical

Bayesian modeling

- specify actual (conditional) distributions
- specify (conditional) independence assumptions
- modeler's choice and responsibility

Thanks for your attention Questions?

[^0]: ${ }^{a}$ symmetric positive semi-definite

