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Autonomous robots
▶ anatomy
▶ functions

Models
▶ formalization of expected behavior of

▶ sensors, actuators
▶ environment (including others in interaction)

▶ not fully accurate

Aim of this session
▶ reasoning
▶ reminders on probabilities
▶ Bayesian inference
▶ Bayesian modeling
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01
Reasoning



Definition (Merriam-Webster)
▶ reasoning

: the use of reason
▶ reason:

▶ sanity
▶ proper exercise of the mind
▶ the power of comprehending, inferring, or thinking

Definition (Wikipedia)
▶ reasoning: applying logic to seek truth and draw conclusions from

new or existing information

Use in robotics
▶ process sensor information
▶ know what is going on

Reasoning

Reasoning
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Forms of reasoning
▶ deduction: go from premises to conclusion
▶ induction: go from cases to generalization
▶ abduction/retroduction: find out more likely causes of a given effect
▶ analogical: go from cases to cases by similarity

▶ fallacy: (self-)deception by wrong reasoning

Formalization

▶ logic: Aristotle, Frege, Hilbert, Gödel, etc.

Issue
▶ imperfect models (∼ theorems)
▶ imperfect knowledge (∼ axioms)

⇒ truth-value replaced by plausibility/belief

Reasoning

Reasoning
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Cox theorem (1946)
▶ plausibility of a proposition as a real number
▶ common sense reasoning and consistency

⇒ plausibility can be mapped to probability

⇒ reasoning is probability calculus

Bayesian probability theory (E.T. Jaynes)
▶ formal system of logic under uncertainty
▶ computing beliefs (state of knowledge)
▶ using probability computation

Cox theorem

Reasoning
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⇒ plausibility can be mapped to probability

⇒ reasoning is probability calculus

Bayesian probability theory (E.T. Jaynes)
▶ formal system of logic under uncertainty
▶ computing beliefs (state of knowledge)
▶ using probability computation

Different from the frequentist interpretation of probabilities

Cox theorem

Reasoning
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02
Reminders on probabilities



Probabilities for propositions
▶ number between 0 and 1

(Random) Variable
▶ variable we don’t know the value of
▶ values in a given finite domainD: finite set of integers, categories…

Probability distribution
▶ distribution over the different possible values inD

DC → (0, 1)

c 7→ P([C = c]) =

{
0.7 if c = 8

0.3 if c = 10

Probability values

Reminders on probabilities
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Continuous variables
▶ continuous domain: (0, 1),R+,R,Rn…

Cumulative probability
▶ probability for intervals: number between 0 and 1

P([D < 5min]) = 0.9

▶ cumulative density function (cdf ){
DD → (0, 1)

d 7→ P([D < d])

Probability for continuous variables

Reminders on probabilities

9 – Francis Colas – Autonomous robotics – Bayesian inference – 2022-09-12



Probability density function
▶ derivative of cumulative probability
▶ can be higher than 1
▶ e.g. Cauchy distribution:

cdf:


R → (0, 1)

x 7→ P([X < x]) =
1
π
arctan

(
x− x0
γ

)
+

1
2

pdf:


R → R+

x 7→ p([X = x]) =
1

πγ

[
1+

(
x−x0
γ

)2]

Probability density function

Reminders on probabilities
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Conjunction
▶ probability of both variables: P([A = red], [C = 8]) = 0.36

▶ still a variable: DA,B = DA ×DB

▶ commutative: A, B = B,A

Conditional probability
▶ assumption on the value of a variable: P([C = 8] | [A = red]) = 0.9

▶ collection of probability distributions

P(C | A) :

{
DA ×DC → (0, 1)

a, c 7→ P([C = c] | [A = a])

≡

{
DA → [ DC → (0, 1) ]

a 7→ [ c 7→ P([C = c] | [A = a]) ]

Combinations of variables

Reminders on probabilities
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Notations
▶ Pr(A)

▶ P(A)

▶ p(A)

▶ P([A = a])

▶ p(a)

▶ π(a)
▶ need to be careful:

▶ discrete probability/density/cumulative probability
▶ variable/value

Continuous/discrete
▶ unified with measure theory
▶ still need caution:

▶ densities are not probabilities
▶ densities can be bigger than 1
▶ densities also follow probability operations

Probabilities

Reminders on probabilities
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03
Bayesian inference



Probability distributions
▶ sum to 1 (law of total probability)∑

a∈DA

P([A = a]) = 1
∫
DA

p(a)da = 1
∑
A

p(A) = 1

Conditional probability distributions
▶ don’t sum to 1∑

B

P(A | B) ̸= 1
∑
A,B

P(A | B) ̸= 1 in general

▶ but of course

∀b ∈ DB,
∑
a∈DA

P([A = a] | [B = b]) = 1
∑
A

p(A | B) = 1

Normalization

Bayesian inference
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Marginalization rule
▶ “sum rule”
▶ simple consequence of normalization of distributions∑

A

p(A, B) = p(B)

Validity
▶ continuous or discrete variable
▶ probabilities or distributions
▶ conditional distributions
▶ variable conjunctions∑

A,B

p(A, B, C | D) = p(C | D)

Marginalization rule

Bayesian inference
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Bayes rule
▶ “product rule”
▶ several ways to state it

▶ p(B | A) = p(A|B)p(B)
p(A)

▶ p(A, B) = p(A | B)p(B) = p(B | A)p(A)
▶ p(A | B) = p(A,B)

p(B)

Validity
▶ continuous or discrete variables
▶ probabilities or distributions
▶ conditional distributions
▶ variable conjunctions

p(A, B, C | D) = p(A | B, C,D)p(B, C | D)

Bayes rule

Bayesian inference
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Bayesian inference
▶ computation of some (conditional) probability distribution
▶ based on a factorization of the joint probability distribution
▶ generic

p(A | C) =
∑

B p(A, B, C)∑
A,B p(A, B, C)

Implementation challenges
▶ computation of sums or integrals
▶ ordering of sums and product

Bayesian inference

Bayesian inference
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Variables
▶ infected or not: i or¬i
▶ positive test or not: t or¬t

Parameters
▶ sensibility (p(t | i)): 96%
▶ specificity (p(¬t | ¬i)): 99.2%
▶ circulation: p(i) = 0.001

Example: disease test

Bayesian inference
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Probability of positive test:

p(t) =
∑
i

p(t, i) marginalization

=
∑
i

p(t | i)p(i) Bayes rule

= p(t | ¬i)p(¬i) + p(t | i)p(i) standard arithmetic

= (1− p(¬t | ¬i))p(¬i) + p(t | i)p(i) marginalization

= 0.008 ∗ 0.999+ 0.96 ∗ 0.001 model

p(t) = 0.008952

Inference example (1/2)

Bayesian inference
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Probability of being infected with positive test result:

p(i | t) = p(t, i)
p(t)

Bayes rule

=
p(t | i)p(i)

p(t)
Bayes rule

=
0.96 ∗ 0.001
0.008952

model and computation above

≈ 0.107

Probability of not being infected with negative test result:

p(¬i | ¬t) ≈ 0.99996

Inference example (2/2)

Bayesian inference
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04
Bayesian modeling



Modeling
▶ expressing knowledge
▶ deduce properties

Different paradigms
▶ equations: classical, differential…
▶ logic: propositional, first-order…
▶ probabilities, fuzzy logic…

Bayesian modeling
▶ uncertain and incomplete knowledge
▶ plausibility as probability (Cox theorem)
▶ “subjectivist” use of probabilities

Modeling

Bayesian modeling
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Bayesian modeling
▶ specify model
▶ state assumptions

Model
▶ define variables
▶ specify joint distribution

Joint distribution
▶ “exponential” with number of variables
▶ factorization using independence assumptions

Bayesian modeling

Bayesian modeling
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Independence
▶ A independent from B (noted A ⊥ B)
▶ iff p(A, B) = p(A)p(B)

Example
▶ DA = 1, . . . ,N andDB = 1, . . . ,M

▶ p(A, B): N×M− 1 = 99 degrees of freedom
▶ if A ⊥ B, p(A, B) = p(A)p(B): (N− 1) + (M− 1) = 18 dof

Conditional independence
▶ A independent from B conditionally to C (A ⊥ B | C)
▶ iff p(A, B | C) = p(A | C)p(B | C)

▶ Warning: A ⊥ B | C 6=⇒ A ⊥ B

▶ Warning: A ⊥ B 6=⇒ A ⊥ B | C

Independence assumptions

Bayesian modeling
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Factorization of the joint
▶ p(A, B, C)

▶ Bayes rule (always true)

p(A, B, C) = p(A)p(B | A)p(C | A, B)

▶ assuming A ⊥ B:

p(A, B, C) = p(A)p(B)p(C | A, B)

▶ assuming only C ⊥ B | A:

p(A, B, C) = p(A)p(B | A)p(C | A)

Factorization of the joint

Bayesian modeling

25 – Francis Colas – Autonomous robotics – Bayesian inference – 2022-09-12



Factorization of the joint
▶ p(A, B, C)

▶ Bayes rule (always true)

p(A, B, C) = p(A)p(B | A)p(C | A, B)

▶ assuming A ⊥ B:

p(A, B, C) = p(A)p(B)p(C | A, B)

▶ assuming only C ⊥ B | A:

p(A, B, C) = p(A)p(B | A)p(C | A)

Factorization of the joint

Bayesian modeling

25 – Francis Colas – Autonomous robotics – Bayesian inference – 2022-09-12



Factorization of the joint
▶ p(A, B, C)

▶ Bayes rule (always true)

p(A, B, C) = p(A)p(B | A)p(C | A, B)

▶ assuming A ⊥ B:

p(A, B, C) = p(A)p(B)p(C | A, B)

▶ assuming only C ⊥ B | A:

p(A, B, C) = p(A)p(B | A)p(C | A)

Factorization of the joint

Bayesian modeling

25 – Francis Colas – Autonomous robotics – Bayesian inference – 2022-09-12



Bayesian networks
▶ graphical representation of dependencies
▶ nodes are variables
▶ (lack of ) edges are [conditional] (in)dependence assumptions

Example

O

S

A

p(O, S,A) = P(S)P(O | S)P(A | S)

Bayesian networks

Bayesian modeling
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Discrete distribution
▶ probability value for each variable value
▶ parameters: table
▶ specific case: uniform

Probability distributions on continuous variables
▶ expression of probability density function
▶ depends on the domain

Continuous uniform
▶ only on a bounded interval (a, b)
▶ no parameter

p(x) =
1

b− a

Distributions

Bayesian modeling
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Gaussian
▶ only onR
▶ parameters: mean µ and standard deviation σ

p(x) = N (x;µ, σ) =
1√
2πσ

e−
1
2 (

x−µ
σ )

2

multivariate Gaussian
▶ on real vectors inRd

▶ parameters: mean vectorµ ∈ Rd and covariance matrixa Σ ∈ Rd×d

p(xxx) = N (xxx;µ,Σ) = (2π)−
d
2 detΣ

1
2 e−

1
2 (xxx−µ)⊺Σ−1(xxx−µ)

asymmetric positive semi-definite

Examples of Continuous distributions

Bayesian modeling
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Conditional probability distributions
▶ same choice of distributions
▶ conditional: collection of distributions
▶ parameters as functions of conditioning variable

Discrete example

p(A | B) :
B = 0 B = 1 B = 2

A = 0 0.4 0.5 0.1
A = 1 0.6 0.5 0.9

Continuous example

p(x | y) = N (x;µx(y), σx(y))

Conditional probability distributions

Bayesian modeling
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Conclusion



Probabilities
▶ represent state of knowledge
▶ ambiguous notations

Bayesian inference
▶ Bayes and marginalization rules
▶ mechanical

Bayesian modeling
▶ specify actual (conditional) distributions
▶ specify (conditional) independence assumptions
▶ modeler’s choice and responsibility

Probabilities

Conclusion
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Thanks for your attention
Questions?
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