

Motion planning ST5 Autonomous robotics

Francis Colas

2022-09-23

Introduction

Motion

- generated by motors
 - electric (AC/DC), pneumatic or hydraulic
 - stepper motor: fixed positions
 - servomotors: motor+integrated sensor for position control
- controlled to perform a given trajectory

Motion planning

- compute trajectory
- to reach a defined goal
- while following constraints (collision avoidance, dynamics...)

Aim of the session

configuration space

2 - Francis Colas - Autonomous robotics - Motion planning - 2022-09-23

Configuration space

Trajectory

Path

- sequence of poses
- typically from a start to a goal location

Trajectory

- mapping from time to configuration
- allows to compute velocities and commands

Constraints

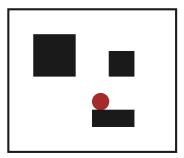
- minimum length/distance
- minimum cost (application-dependent)
- security/distance to obstacles
- kinematics or dynamics

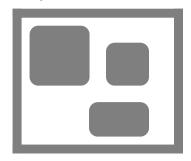
Configuration space

- Workspace \mathcal{W}
- space in which robot evolves
 - \blacktriangleright in general: $\mathcal{W}=\mathbb{R}^3$
 - sometimes: $\mathcal{W} = \mathbb{R}^2$

Configuration space ${\mathcal C}$

- \blacktriangleright set of feasible configurations $oldsymbol{q} \in \mathcal{C}$
- taking into account physical constraints
- \blacktriangleright in general $\mathcal{C}
 eq \mathcal{W}$
- Free space ${\mathcal E}$
- configurations not in collision
- $\blacktriangleright \ \mathcal{E} = \mathcal{C} \setminus \mathcal{O}$
- adapted for planning

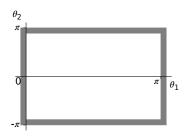




Holonomic circular mobile robot

Workspace and robot

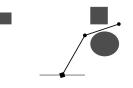
Free space

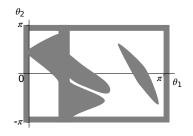

Configuration space

Robotic arm (1/2)

2 degrees-of-freedom arm

Configuration space




Configuration space

Robotic arm (2/2)

Workspace

Free space

Conclusion on configuration space

Configuration space

- unification of mobile robots and robotic arms
- free space (no collision)
- adapted for planning

Building

- Minkowski sum for a mobile robot
- collision test for an arm

Limits

- only geometric constraints
- no kinematics nor dynamics
- potentially high-dimension space

02

Planning algorithms

Algorithms

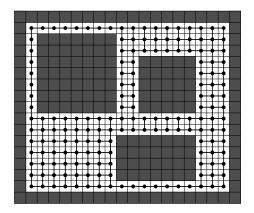
Approaches

- space decomposition
 - 🕨 grid
 - cell decomposition
- sampling
- potential fields
- geometric resolution
- path refinement

Path planning with a grid

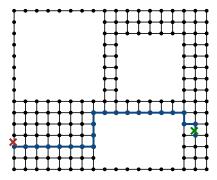
Path planning with a grid

- adapted to occupancy grids
- neighborhood graph
- graph search (Dijkstra, A*)

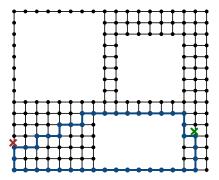

Result

- 🕨 path
- discretized orientation
- not necessarily optimal in distance
- high complexity in medium to high dimension

Example (1/4)

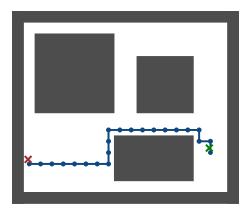

Cell graph

Example (2/4)


Graph search (A* or other)

Example (3/4)

Graph search (A* or other)



Shortest path not unique!

Example (4/4)

Result

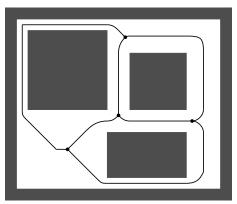
Planning with cell decomposition

Cell decomposition

various tessellation methods

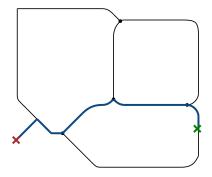
Voronoi diagram

- tiling based on distance to obstacles
- dual of Delaunay triangulation
- path following of the edges of the cells

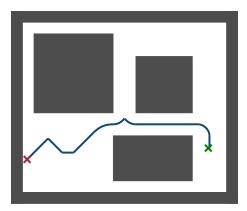

Result

- 🕨 path
- as far from the obstacles as possible
- difficult to build in high dimensions
- not distance optimal

Example (1/3)


Voronoi diagram

Example (2/3)


Graph search

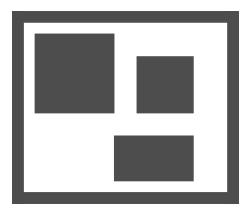
Example (3/3)

Result

Sampling-based planning

Rapidly-expanding Random Trees

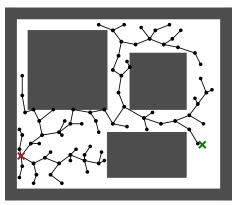
- ▶ RRT, RRT*...
- stochastic algorithm by sampling the space
- connection tree building
- until goal is found
- refinement of the path


Result

- 🕨 path
- distance optimal for infinite samples
- quick and anytime as soon as the path is found

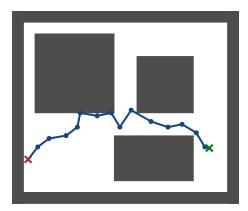
Example (1/3)

Free space



22 - Francis Colas - Autonomous robotics - Motion planning - 2022-09-23

Example (2/3)


Graph expansion

Example (3/3)

Result

24 - Francis Colas - Autonomous robotics - Motion planning - 2022-09-23

Algorithm RRT*

$$V \leftarrow \{x_{init}\}; E \leftarrow \emptyset$$

for $i = 1, \dots, n$ do
 $x_{rand} \leftarrow SampleFree()$
 $x_{nearest} \leftarrow Nearest (G = (V, E), x_{rand})$
 $x_{new} \leftarrow Steer (x_{nearest}, x_{rand})$
if CollFree $(x_{nearest}, x_{new})$ then
 $X_{near} \leftarrow Near (G = (V, E), x_{new}, \delta)$
 $x_{min} \leftarrow \arg \min C (x) + c (x, x_{new})$
 $x \in x_{near}$
 $V \leftarrow V \cup \{x_{new}\}$
 $E \leftarrow E \cup \{(x_{nearestmin}, x_{new})\}$
for all $x \in X_{near}$ do
if $C(x_{new}) + c (x_{new}, x) < C(x)$ then
 $E \leftarrow E \cup \{(P(x), x)\}$
 $E \leftarrow E \cup \{(x_{new}, x)\}$
end if
end for
end if
end for
return $G = (V, E)$
 $Z = -Fractic Scheward A theorem on the state of th$

Functions

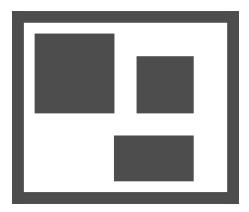
- SampleFree(): sample point in free space
- Nearest(G, x): point in G nearest from x
- Steer(x₁, x₂): point toward x₂ at a given distance from x₁
- CollFree(x₁, x₂): no obstacle between x₁ and x₂
- Near(G, x, d): points in G at a distance from x less than d
- C(x): cost between x_{init} and x, walking up the graph
- ► $c(x_1, x_2)$: cost between x_1 and x_2
- P(x): parent of x.

Planning with potential fields

Potential fields

- repulsive field around obstacles
- attractive field around goal
- combination of both
- gradient descent

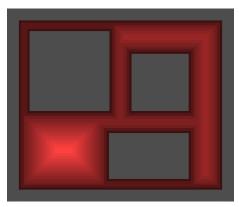
Result


🕨 path

- away from obstacles
- quick to compute
- 🕨 local minima

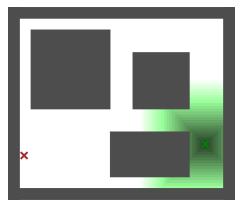
Example (1/4)

Free space

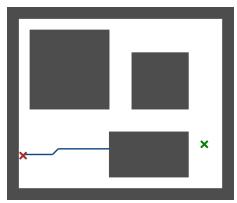


27 - Francis Colas - Autonomous robotics - Motion planning - 2022-09-23

Example (2/4)


Repulsive field

Example (3/4)


Attractive field

Example (4/4)

Gradient descent

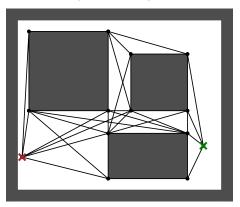
Local minimum!

Planning with visibility graph

Visibility graph

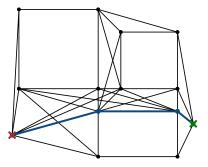
- nodes: vertices of obstacles
- edge: iff visibility between nodes
- start and goal as nodes
- graph search

Result

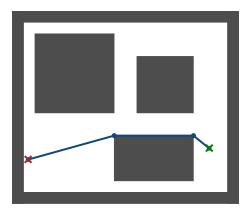


- 🕨 distance optimal
- can follow obstacle edges
- need polygonal/polyhedral obstacles

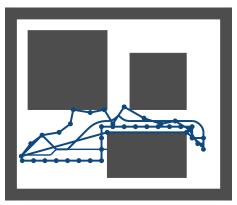
Example (1/3)


Visibility graph including start and goal

Example (2/3)


Graph search (A* or other)

Example (3/3)


Result

Comparison

Comparison of the paths

03

Conclusion

Conclusion

Configuration space

- space free from collision
- adapted to planning
- similar for mobile and articulated robots

Planning algorithms

- different families with different internal representations
- various optimization criteria

Limits

- 🕨 known map
- static obstacles

Bibliography

RRT*, PRM*, etc.

 Karaman and Frazzoli, Sampling-based algorithms for optimal motion planning, IJRR, 2011.

Books

- Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991.
- Lavalle, Planning Algorithms, Cambridge University Press, 2006.
- Siciliano et al., Springer Handbook of Robotics, 2nd ed., Springer, 2016.

Thanks for your attention Questions?