

Mapping and SLAM ST5 Autonomous robotics

Francis Colas

2022-09-23

Localization

- estimate the pose of the robot in a known map
- Bayesian filters: Markov or Monte-Carlo localization

Localization

- estimate the pose of the robot in a known map
- ► Bayesian filters: Markov or Monte-Carlo localization

Mapping

- build a map based on sensor values
- easy to do with known poses

Localization

- estimate the pose of the robot in a known map
- ► Bayesian filters: Markov or Monte-Carlo localization

Mapping

- build a map based on sensor values
- easy to do with known poses

Simultaneous Localization and Mapping

- jointly solve localization and mapping
- ► from sensor values

Localization

- estimate the pose of the robot in a known map
- ► Bayesian filters: Markov or Monte-Carlo localization

Mapping

- build a map based on sensor values
- easy to do with known poses

Simultaneous Localization and Mapping

- jointly solve localization and mapping
- from sensor values

Aim of this session

- mapping algorithms
- SLAM algorithms

01

Mapping

Mapping

Definition

- build a map
- from sensor values
- knowing the pose of the robot at all times
- algorithms are different depending on the map
- sensors values and models are important

Mapping

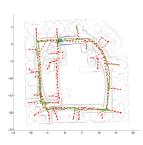
Definition

- build a map
- from sensor values
- knowing the pose of the robot at all times
- algorithms are different depending on the map
- sensors values and models are important

Examples

- pose graph
- point cloud
- occupancy grid

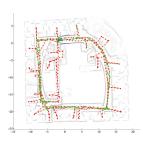
Building of a pose graph



Building of a pose graph

Elements

- node with pose and sensor values
- links between nodes: relative displacement



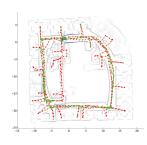
Building of a pose graph

Elements

- node with pose and sensor values
- links between nodes: relative displacement

Algorithm

- with each new sensor value:
 - add node to the graph
 - link to previous node thanks to localization
 - eventually look for other close nodes (loop closure)



Building of a point cloud

Building of a point cloud

Sensor values

- depth image
- 2D or 3D laser scan
- in sensor reference frame

Building of a point cloud

Sensor values

- depth image
- 2D or 3D laser scan
- in sensor reference frame

Algorithm

- with each new sensor value:
 - transform into point cloud in map frame
 - concatenate into point cloud map
- sometimes: clean map

Building of an occupancy grid

Building of an occupancy grid

Sensor values

- 2D laser scan (for 2d occupancy grids)
- 3D scan or depth image (for 3d grids)
- distance measured from center of sensor

Building of an occupancy grid

Sensor values

- 2D laser scan (for 2d occupancy grids)
- > 3D scan or depth image (for 3d grids)
- distance measured from center of sensor

Algorithm

- for each measured distance:
 - cast ray from center of sensor until impact
 - update occupancy values along ray

Ray casting

Occupancy grid update

Ray casting

- start: absolute position of the center of the sensor
- end: absolute position of the impact
- Bresenham's line algorithm¹

1https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

Occupancy grid update

Ray casting

- start: absolute position of the center of the sensor
- end: absolute position of the impact
- Bresenham's line algorithm¹

Cell update

- probabilistic
 - impact position: increase probability of occupancy
 - along ray: decrease probability of occupancy

¹https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

Occupancy grid update

Ray casting

- start: absolute position of the center of the sensor
- end: absolute position of the impact
- Bresenham's line algorithm¹

Cell update

- probabilistic
 - impact position: increase probability of occupancy
 - along ray: decrease probability of occupancy
- deterministic
 - impact position: set probability to 1
 - along ray: set probability to 0

¹https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

Conclusion on mapping

Map building

- transform sensor-centered values into global frame
- accumulation into a map
- relatively easy when pose is known

Conclusion on mapping

Map building

- transform sensor-centered values into global frame
- accumulation into a map
- relatively easy when pose is known

Conclusion on mapping

Map building

- transform sensor-centered values into global frame
- accumulation into a map
- relatively easy when pose is known

Localization

- estimate the pose
- when the map is known

02

SLAM

Definition

Simultaneous Localization And Mapping

Definition

Simultaneous Localization And Mapping

Definition

- Simultaneous Localization And Mapping
- solving both problem jointly
- unknown pose
- unknown map

Definition

- Simultaneous Localization And Mapping
- solving both problem jointly
- unknown pose
- unknown map

Approaches

- optimization:
 - in parallel: map optimization and pose optimization
- probabilistic
 - state estimation (pose+map) with an EKF
 - state estimation (pose+map) with a particle filter

PTAM

Parallel Tracking and Mapping

- for augmented reality: estimation of the camera pose
- optimization approach
- no odometry but camera motion model
- landmark map: visual features with descriptors

PTAM

Parallel Tracking and Mapping

- for augmented reality: estimation of the camera pose
- optimization approach
- no odometry but camera motion model
- landmark map: visual features with descriptors

Algorithm

- Tracking:
 - fast (30 Hz) estimate of camera pose from the current map
 - optimization of reprojection error of map features in the image
- Mapping:
 - ightharpoonup slow (\sim Hz) optimization of the map

Probabilistic approach

ight estimation of pose and map

$$p(\boldsymbol{x}_k, \boldsymbol{m} \mid \boldsymbol{z}_{1:k}, \boldsymbol{u}_{1:k})$$

Probabilistic approach

joint estimation of pose and map

$$p(\boldsymbol{x}_k, \boldsymbol{m} \mid \boldsymbol{z}_{1:k}, \boldsymbol{u}_{1:k})$$

- variables
 - ightharpoonup pose: \boldsymbol{x}_k
 - bullet observation: z_k
 - \triangleright command: \boldsymbol{u}_k
 - **▶** map: **m**

Probabilistic approach

joint estimation of pose and map

$$p(\boldsymbol{x}_k, \boldsymbol{m} \mid \boldsymbol{z}_{1:k}, \boldsymbol{u}_{1:k})$$

- variables
 - ightharpoonup pose: \boldsymbol{x}_k
 - lacktriangle observation: $oldsymbol{z}_k$
 - lacktriangle command: $oldsymbol{u}_k$
 - map: *m*

- models
 - ightharpoonup motion: $p(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_k, \boldsymbol{u}_{k+1})$
 - ightharpoonup observation: $p(\mathbf{z}_k \mid \mathbf{x}_k, \mathbf{m})$

Probabilistic approach

joint estimation of pose and map

$$p(\mathbf{x}_k, \mathbf{m} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k})$$

models

ightharpoonup motion: $p(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_k, \boldsymbol{u}_{k+1})$

b observation: $p(\mathbf{z}_k \mid \mathbf{x}_k, \mathbf{m})$

- variables
 - pose: **x**_k
 - observation: z_k
 - command: u_k
 - map: *m*
- inference
 - prediction:

$$p(\mathbf{x}_{k+1}, \mathbf{m} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k+1}) = \sum_{\mathbf{x}_k} p(\mathbf{x}_{k+1} \mid \mathbf{x}_k, \mathbf{u}_{k+1}) p(\mathbf{x}_k, \mathbf{m} \mid \mathbf{z}_{1+k}, \mathbf{u}_{1:k})$$

update:

$$p(\mathbf{x}_{k+1}, \mathbf{m} \mid \mathbf{z}_{1:k+1}, \mathbf{u}_{1:k+1}) \propto p(\mathbf{z}_{k+1} \mid \mathbf{x}_{k+1}, \mathbf{m}) p(\mathbf{x}_{k+1}, \mathbf{m} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k+1})$$

Invia-

EKF-SLAM

EKF-SLAM

- landmark map: 2D positions
- Extended Kalman filter on both pose and landmarks
- data association problem:
 - identify which observation corresponds to which map landmark

EKF-SLAM

EKF-SLAM

- landmark map: 2D positions
- Extended Kalman filter on both pose and landmarks
- data association problem:
 - identify which observation corresponds to which map landmark

Inference

- as in a Kalman filter
 - multiplication and inverse of covariance matrices and Jacobians
 - cubic complexity in number of landmarks

Fast-SLAM

Fast-SLAM

- landmark map
- or occupancy grid
- particle filter

Fast-SLAM

Fast-SLAM

- landmark map
- or occupancy grid
- particle filter

Inference

factorization (Rao-Blackwellization)

$$p(\mathbf{x}_{0:k}, \mathbf{m} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k}) = p(\mathbf{m} \mid \mathbf{x}_{0:k}, \mathbf{z}_{1:k}) p(\mathbf{x}_{0:k} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k})$$

- (simplified) algorithm
 - $lack {
 m draw} \ {m x}_{k+1}^{(i)} \sim \pi({m x}_{k+1} \mid {m x}_{0:k}^{(i)}, {m z}_{1:k}, {m u}_{1:k+1}) \ {
 m to} \ {
 m augment} \ {m x}_{0:k}^{(i)}$
 - $\qquad \qquad \text{update weight: } w_{k+1}^{(i)} = w_k^{(i)} \frac{{}^{p(\boldsymbol{z}_{k+1}|\boldsymbol{x}_{0:k+1}^{(i)},\boldsymbol{z}_{1:k})p(\boldsymbol{x}_{k+1}^{(i)}|\boldsymbol{x}_k^{(i)},\boldsymbol{u}_{k+1})}}{{}^{n(\boldsymbol{x}_{k+1}|\boldsymbol{x}_{0:k}^{(i)},\boldsymbol{z}_{1:k})}}$
 - resampling
 - update of the map for each particle (with particle pose)

Fast-SLAM

Fast-SLAM

- landmark map
- or occupancy grid
- particle filter

Inference

factorization (Rao-Blackwellization)

$$p(\mathbf{x}_{0:k}, \mathbf{m} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k}) = p(\mathbf{m} \mid \mathbf{x}_{0:k}, \mathbf{z}_{1:k}) p(\mathbf{x}_{0:k} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k})$$

- (simplified) algorithm
 - draw $\mathbf{x}_{k+1}^{(i)} \sim p(\mathbf{x}_{k+1} \mid \mathbf{x}_k^{(i)}, \mathbf{u}_{k+1})$ to augment $\mathbf{x}_{0:k}^{(i)}$
 - lacksquare update weight: $w_{k+1}^{(i)} = w_k^{(i)} p(\mathbf{z}_{k+1} \mid \mathbf{x}_{0:k+1}^{(i)}, \mathbf{z}_{1:k})$
 - resampling
 - update of the map for each particle (with particle pose)

Conclusion on SLAM

Conclusion on SLAM

- integration of localization and mapping
- real-world issue with pose uncertainty and no map
- two approaches
 - asynchronous optimization of pose and map
 - synchronous inference on pose (sequence) and map

03

Conclusion

Conclusion

Mapping

- several kinds of map
- can be easy with known pose
- several uses of the maps

SLAM

- real-world situation
- several approaches for different cases
- inference or optimization to build the map

Bibliography

SLAM

- introduction
 - Durrant-Whyte and Bailey, Simultaneous Localization and Mapping: Part I, RAM 2006.
 - Bailey and Durrant-Whyte, Simultaneous Localization and Mapping: Part II, RAM 2006.
- particle filter SLAM
 - Dissanayake et al., A solution to the simultaneous localisation and mapping (SLAM) problem, IEEE Trans. Robot. Automat. 2001.
 - Montemerlo et al., Fast-SLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that converges, IJCAI 2003.
 - Grisetti et al., Improved techniques for grid mapping with Rao-Blackwellized particle filters, TRO 2007

Bibliography

Vision

- Klein and Murray, Parallel tracking and mapping for small AR workspaces, ISMAR 2007.
- Scaramuzza and Fraundorfer, Visual odometry, RAM 2011.
- Fraundorfer and Scaramuzza, Visual odometry. Part II, RAM 2012.

Books

- Thrun et al., Probabilistic Robotics, MIT Press, 2005.
- Siciliano et al., Springer Handbook of Robotics, 2nd ed., Springer, 2016.

Informatics mathematics

Thanks for your attention Questions?