

Localization

ST5 Autonomous robotics

Francis Colas

2022-09-16

Introduction

State estimation

- perception of the robot itself
- from sensor values
- with robot and sensor models

Localization

- estimation of the pose (position, orientation, configuration)
- various kinds of maps
- various approaches

Aim of the session

- definition of the pose
- localization
- maps

01

Pose

Kinds of robots

Mobile robots

- rigid-body in motion
- degrees-of-freedom: position and orientation of the mobile base

Robotic arm

- kinematic chain on static base
- degrees-of-freedom: relative pose of each link

Humanoïd

- kinematic tree on mobile base
- degrees-of-freedom: pose of the base and relative pose of each link

Others

- parallel robots
- rancis Colas Autonomous robotics Localization 2022-09-16

Pose

Pose

- parametrization allowing to derive the position of any point of the robot
- mobile base: position and orientation
- arm: angle/parameters of each joint between links

Reference frame

- (at least) a frame per link (rigid object) + external/absolute frame
- bijection between relative pose and transformation

Transformations

- ightharpoonup rotations: special orthogonal group $\mathcal{SO}(n)$
- \blacktriangleright translations: vector space \mathbb{R}^n
- \blacktriangleright transformations: special Euclidean group $\mathcal{SE}(n)$

Pose space

Geometrical space

- ightharpoonup position: \mathbb{R}^3 or \mathbb{R}^2
- ightharpoonup orientation: $\mathcal{SO}(3)$ or $\mathcal{SO}(2)$
- pose
 - ightharpoonup drone: $\mathbb{R}^3 \times \mathcal{SO}(3)$
 - ground robot: $\mathbb{R}^2 \times \mathcal{SO}(2)$
 - ▶ 3 dof arm: $SO(2) \times SO(2) \times SO(2)$
- transformation
 - ightharpoonup drone: $\mathcal{SE}(3)$
 - ightharpoonup ground robot: $\mathcal{SE}(2)$

Position parametrization

ightharpoonup vector $p \in \mathbb{R}^n$

Orientation parametrization

2D orientation

- $ightharpoonup \mathcal{SO}(2)$ (circle group), 1-sphere S^1 (sometimess S^1)
- lacksquare unit complex: $\mathcal{T}=\{z\in\mathbb{C}:|z|=1\}$
- rotation matrix (orthogonal, unitary, positive) : $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$
- lacktriangle "simplest" parametrization: angle $heta\in\mathbb{R}/2\pi$

3D orientation

- $ightharpoonup \mathcal{SO}(3)$, 2-sphere S^2 , or \mathbb{S}^2
- lacksquare Euler angles: $heta,\phi,\psi\in(\mathbb{R}/2\pi)^3$ o several conventions, gimbal lock
- rotation matrix
- ightharpoonup axis-angle: $\mathbb{R}^3 imes\mathbb{R}/2\pi$
- lacksquare unitary quaternions: $\{q\in\mathbb{H}:|q|=1\}$

02

Localization

Localization

Definition

- find the pose of the robot
- with respect to a known map
- based on sensor values

Approaches

- state estimation
- geometric constraint resolution
- error optimization

State estimation approaches

- variants based on the representation
- Markov Localization
- Monte-Carlo localization

Markov Localization

Principle

- pose estimation
- based on odometry and exteroceptive observations
- Bayesian filter
- discretized state

Inference

$$p(\mathbf{x}_{k} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k}, \mathbf{m})$$

$$p(\mathbf{x}_{k+1} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k+1}, \mathbf{m}) = \sum_{\mathbf{x}_{k}} p(\mathbf{x}_{k+1} \mid \mathbf{x}_{k}, \mathbf{u}_{k+1}, \mathbf{m}) p(\mathbf{x}_{k} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k}, \mathbf{m})$$

$$p(\mathbf{x}_{k+1} \mid \mathbf{z}_{1:k+1}, \mathbf{u}_{1:k+1}, \mathbf{m}) \propto p(\mathbf{z}_{k+1} \mid \mathbf{x}_{k+1}, \mathbf{m}) p(\mathbf{x}_{k+1} \mid \mathbf{z}_{1:k}, \mathbf{u}_{1:k+1}, \mathbf{m})$$

Markov Localization

Illustration

Markov Localization

Example \rightarrow where is the map?

- ightharpoonup a robot in corridor with one door in $x_d = 6$
- $x_k \in \{0, \dots, 9\}, u_k \in \{-1, 0, 1\}, z_k \in \{\text{far, close, in front}\}$
- transition model
 - 90% chance arrive where expected
 - 5% chance to be too far or not far enough by 1 step

$$p(x_{k+1} \mid x_k, u_{k+1}, \mathbf{m}) = \begin{cases} 90\% & \text{if } x_{k+1} = x_k + u_{k+1} \\ 5\% & \text{if } ||x_{k+1} - (x_k + u_{k+1})|| = 1 \\ 0\% & \text{otherwise} \end{cases}$$

- observation model
 - 80% chance to be correct
 - 10% chance for each other case

$$p(z_k \mid x_k, \textbf{\textit{m}}) = \begin{cases} 80\% & \text{if } \|x_k - \textbf{\textit{x}}_d\| > 1 \text{ and } z_k = \text{far} \\ 80\% & \text{if } \|x_k - \textbf{\textit{x}}_d\| = 1 \text{ and } z_k = \text{close} \\ 80\% & \text{if } x_k = \textbf{\textit{x}}_d \text{ and } z_k = \text{in front} \end{cases}$$

Monte Carlo Localization

Principle

- pose estimation
- odometry and observations
- Bayesian filter
- particle filter (importance sampling)
- lacksquare morally: $p(oldsymbol{v})pprox_{N o\infty}\sum_N w^{(i)}\delta(oldsymbol{v}-oldsymbol{v}^{(i)})$ with $\sum_N w^{(i)}=1$

Algorithm

- $igl| \left\{ \left(oldsymbol{x}_k^{(i)}, w_k^{(i)} \right)_i \right\}$ initial set of particles
- $m{ ilde{x}}_{k+1}^{(i)} \sim p(m{x}_{k+1} \mid m{x}_k^{(i)}, m{u}_{k+1})$ prediction
- lacksquare $w_{k+1}^{(i)} \propto w_k^{(i)} imes p(oldsymbol{z}_{k+1} \mid oldsymbol{x}_{k+1}^{(i)}, oldsymbol{m})$ correction
- resampling and loop

Monte Carlo Localization

Illustration [Fox, AAAI 1999]

Conclusion on localization

Localization

- Markov localization
 - discretized distribution
 - bad scaling
- Monte Carlo localization
 - population of samples/particles
 - impoverishment and degeneracy issues
- known map

03

Maps

Maps

Environment representation

- what is represented?
- characteristics?
- what to do with the maps?

Maps

- geometric map
- landmark map
- point cloud map
- occupancy grid
- digital elevation map
- pose graph
- topological map
- semantic map
 17 Francis Colas Autonomous robotics Localization 2022-09-16

Geometric map

Geometric map

- set of geometric primitives
 - polygons or segments in 2D
 - triangles or polyhedra in 3D
- representation of obstacles
- metric dense map
- difficult to build from sensor values
- easy to plan a path
- scaling: number and complexity of obstacles

Geometric map

Landmark map

Landmark map

- set of landmarks
 - descriptor
 - position
- representation of salient elements
- metric sparse map
- easy to build from sensor values
- designed for localization
- very hard to plan a path
- scaling: number of landmarks

Visual landmark map

Point cloud map

Point cloud map

- set of points
 - position
 - sometimes color...
- representation of surface through sampling
- metric sparse map
- easy to build from sensor values
- hard to plan a path
- scaling: density of points and surfaces

Point cloud map

Occupancy grid

Occupancy grid

- dense representation of space
 - space segmentation
 - probability of occupancy
- representation of free, occupied of unknown space
- metric dense map
- easy to build from distance sensor values
- easy to plan a path
- scaling: surface (or volume) and resolution

Occupancy grid

Digital elevation map

Digital elevation map

- representation of height of the ground
- 2.5D map
- metric dense map
- ok to build from distance sensor values
- easy to plan a path
- scaling: surface and resolution

Digital elevation map

Pose graph

Pose graph

- list of poses of robots
 - sensor values
 - link between poses
- structuring of sensor values
- non metric map
- easy to build
- hard to plan a path
- scaling: size of sensor data

Topological map

Topological map

- graph of zones/places
 - empty space
 - neighbor relationship between zones
- higher level
- non metric map
- hard to plan a path
- scaling: number of places

Semantic map

Semantic map

- semantic information
 - qualitative
 - usage
- non metric map
- very hard to build from sensor data
- high-level planning
- scaling: number of places

Conclusion on maps

Various uses

- localization
- path planning
- task planning
- visualization

Various characteristics

- metric or not
- dense or not
- ease of building from sensor values
- ease of path planning

04

Conclusion

Conclusion

Robot pose

- parametrization of position of all points of the robot
- position, orientation, joints
- orientation in 3D is tricky

Localization

- estimate the pose of the robot with a known map
- various approaches
- various algorithms

Maps

- various kinds of map
- choice depends on usage

Bibliography

Localization

- Fox et al., Markov localization for mobile robots in dynamic environments, JAIR, 1999.
- Thrun et al., Robust Monte Carlo localization for mobile robots, AI, 2001.

Books

- ► Thrun et al., Probabilistic Robotics, MIT Press, 2005.
- Siegwart et al., Introduction to Autonomous Mobile Robots, MIT Press, 2011.
- Siciliano et al., Springer Handbook of Robotics, 2nd ed., Springer, 2016.

Informatics mathematics

Thanks for your attention Questions?