Localization
 ST5 Autonomous robotics

Francis Colas

2022-09-16

Introduction

State estimation

- perception of the robot itself
- from sensor values
- with robot and sensor models

Localization

- estimation of the pose (position, orientation, configuration)
- various kinds of maps
- various approaches

Aim of the session

- definition of the pose
- localization
- maps

01
Pose

Kinds of robots

Mobile robots

\rightarrow rigid-body in motion

- degrees-of-freedom: position and orientation of the mobile base

Robotic arm

- kinematic chain on static base
- degrees-of-freedom: relative pose of each link

Humanoïd

- kinematic tree on mobile base
- degrees-of-freedom: pose of the base and relative pose of each link

Others

- parallel robots

Pose

Pose

- parametrization allowing to derive the position of any point of the robot
- mobile base: position and orientation
- arm: angle/parameters of each joint between links

Reference frame

- (at least) a frame per link (rigid object) + external/absolute frame
- bijection between relative pose and transformation

Transformations

- rotations: special orthogonal group $\mathcal{S O}(n)$
- translations: vector space \mathbb{R}^{n}
- transformations: special Euclidean group $\mathcal{S E}(n)$

Pose space

Geometrical space

- position: \mathbb{R}^{3} or \mathbb{R}^{2}
- orientation: $\mathcal{S O}(3)$ or $\mathcal{S O}(2)$
- pose
- drone: $\mathbb{R}^{3} \times \mathcal{S O}(3)$
- ground robot: $\mathbb{R}^{2} \times \mathcal{S O}(2)$
- 3 dof arm: $\mathcal{S O}(2) \times \mathcal{S O}(2) \times \mathcal{S O}(2)$
- transformation
- drone: $\mathcal{S E}(3)$
- ground robot: $\mathcal{S E}(2)$

Position parametrization

- vector $p \in \mathbb{R}^{n}$

Orientation parametrization

2D orientation

- $\mathcal{S O}(2)$ (circle group), 1 -sphere S^{1} (sometimess \mathbb{S}^{1})
- unit complex: $\mathcal{T}=\{z \in \mathbb{C}:|z|=1\}$
- rotation matrix (orthogonal, unitary, positive) : $\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right)$
- "simplest" parametrization: angle $\theta \in \mathbb{R} / 2 \pi$

3D orientation

- $\mathcal{S O}(3), 2$-sphere S^{2}, or \mathbb{S}^{2}
- Euler angles: $\theta, \phi, \psi \in(\mathbb{R} / 2 \pi)^{3} \rightarrow$ several conventions, gimbal lock
- rotation matrix
- axis-angle: $\mathbb{R}^{3} \times \mathbb{R} / 2 \pi$
- unitary quaternions: $\{q \in \mathbb{H}:|q|=1\}$

02
Localization

Localization

Definition

- find the pose of the robot
- with respect to a known map
- based on sensor values

Approaches

- state estimation
- geometric constraint resolution
- error optimization

State estimation approaches

- variants based on the representation
- Markov Localization
- Monte-Carlo localization

Markov Localization

Principle

- pose estimation
- based on odometry and exteroceptive observations
- Bayesian filter
- discretized state

Inference

$$
\begin{aligned}
p\left(\boldsymbol{x}_{k} \mid \boldsymbol{z}_{1: k}, \boldsymbol{u}_{1: k}, m\right) & \\
p\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{z}_{1: k}, \boldsymbol{u}_{1: k+1}, m\right) & =\sum_{\boldsymbol{x}_{k}} p\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}, \boldsymbol{u}_{k+1}, m\right) p\left(\boldsymbol{x}_{k} \mid \boldsymbol{z}_{1: k}, \boldsymbol{u}_{1: k}, m\right) \\
p\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{z}_{1: k+1}, \boldsymbol{u}_{1: k+1}, m\right) & \propto p\left(\boldsymbol{z}_{k+1} \mid \boldsymbol{x}_{k+1}, m\right) p\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{z}_{1: k}, \boldsymbol{u}_{1: k+1}, m\right)
\end{aligned}
$$

Markov Localization

Illustration

Markov Localization

Example \rightarrow where is the map?

- a robot in corridor with one door in $x_{d}=6$
- $x_{k} \in\{0, \ldots, 9\}, u_{k} \in\{-1,0,1\}, z_{k} \in\{$ far, close, in front $\}$
- transition model
- 90% chance arrive where expected
- 5% chance to be too far or not far enough by 1 step

$$
p\left(x_{k+1} \mid x_{k}, u_{k+1}, \boldsymbol{m}\right)= \begin{cases}90 \% & \text { if } x_{k+1}=x_{k}+u_{k+1} \\ 5 \% & \text { if }\left\|x_{k+1}-\left(x_{k}+u_{k+1}\right)\right\|=1 \\ 0 \% & \text { otherwise }\end{cases}
$$

- observation model
- 80\% chance to be correct
- 10% chance for each other case

$$
p\left(z_{k} \mid x_{k}, \boldsymbol{m}\right)= \begin{cases}80 \% & \text { if }\left\|x_{k}-x_{d}\right\|>1 \text { and } z_{k}=\text { far } \\ 80 \% & \text { if }\left\|x_{k}-x_{d}\right\|=1 \text { and } z_{k}=\text { close } \\ 80 \% & \text { if } x_{k}=x_{d} \text { and } z_{k}=\text { in front } \\ 10 \% & \text { otherwise }\end{cases}
$$

Monte Carlo Localization

Principle

- pose estimation
- odometry and observations
- Bayesian filter
- particle filter (importance sampling)
\rightarrow morally: $p(\boldsymbol{v}) \approx_{N \rightarrow \infty} \sum_{N} w^{(i)} \delta\left(\boldsymbol{v}-\boldsymbol{v}^{(i)}\right)$ with $\sum_{N} w^{(i)}=1$
Algorithm
$>\left\{\left(\boldsymbol{x}_{k}^{(i)}, w_{k}^{(i)}\right)_{i}\right\} \quad$ initial set of particles
- $\boldsymbol{x}_{k+1}^{(i)} \sim p\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}^{(i)}, \boldsymbol{u}_{k+1}\right) \quad$ prediction
$-w_{k+1}^{(i)} \propto w_{k}^{(i)} \times p\left(\boldsymbol{z}_{k+1} \mid \boldsymbol{x}_{k+1}^{(i)}, \boldsymbol{m}\right) \quad$ correction
- resampling and loop

Monte Carlo Localization

Illustration [Fox, AAAI 1999]

Conclusion on localization

Localization

- Markov localization
- discretized distribution
- bad scaling
- Monte Carlo localization
- population of samples/particles
- impoverishment and degeneracy issues
- known map

03
Maps

Maps

Environment representation

- what is represented?
- characteristics?
- what to do with the maps?

Maps

- geometric map
- landmark map
- point cloud map
- occupancy grid
- digital elevation map
- pose graph
- topological map
semantic map

Geometric map

Geometric map

- set of geometric primitives
- polygons or segments in 2D
- triangles or polyhedra in 3D
- representation of obstacles
- metric dense map
- difficult to build from sensor values
- easy to plan a path
- scaling: number and complexity of obstacles

Geometric map

Landmark map

Landmark map

- set of landmarks
- descriptor
- position
- representation of salient elements
- metric sparse map
- easy to build from sensor values
- designed for localization
- very hard to plan a path
- scaling: number of landmarks

Visual landmark map

Point cloud map

Point cloud map

- set of points
- position
- sometimes color...
- representation of surface through sampling
- metric sparse map
- easy to build from sensor values
- hard to plan a path
- scaling: density of points and surfaces

Point cloud map

Occupancy grid

Occupancy grid

- dense representation of space
- space segmentation
- probability of occupancy
- representation of free, occupied of unknown space
- metric dense map
- easy to build from distance sensor values
- easy to plan a path
- scaling: surface (or volume) and resolution

Occupancy grid

Digital elevation map

Digital elevation map

- representation of height of the ground
- 2.5D map
- metric dense map
- ok to build from distance sensor values
- easy to plan a path
- scaling: surface and resolution

Digital elevation map

Pose graph

Pose graph

- list of poses of robots
- sensor values
- link between poses
- structuring of sensor values
- non metric map
- easy to build
- hard to plan a path
- scaling: size of sensor data

Topological map

Topological map

- graph of zones/places
- empty space
- neighbor relationship between zones
- higher level
- non metric map
- hard to plan a path
- scaling: number of places

Semantic map

Semantic map

- semantic information
- qualitative
- usage
- non metric map
- very hard to build from sensor data
- high-level planning
- scaling: number of places

Semantic map

Conclusion on maps

Various uses

- localization
- path planning
- task planning
- visualization

Various characteristics

- metric or not
- dense or not
- ease of building from sensor values
- ease of path planning

04
Conclusion

Conclusion

Robot pose

- parametrization of position of all points of the robot
- position, orientation, joints
- orientation in 3D is tricky

Localization

- estimate the pose of the robot with a known map
- various approaches
- various algorithms

Maps

- various kinds of map
- choice depends on usage

Bibliography

Localization

- Fox et al., Markov localization for mobile robots in dynamic environments, JAIR, 1999.
- Thrun et al., Robust Monte Carlo localization for mobile robots, AI, 2001.

Books

- Thrun et al., Probabilistic Robotics, MIT Press, 2005.
- Siegwart et al., Introduction to Autonomous Mobile Robots, MIT Press, 2011.
- Siciliano et al., Springer Handbook of Robotics, 2nd ed., Springer, 2016.

Thanks for your attention Questions?

